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We attempt a justification of a generalisation of the consistent histories programme
using a notion of probability that is valid for all complete sets of history proposi-
tions. This consists of introducing Cox’s axioms of probability theory and showing
that our candidate notion of probability obeys them. We also give a generalisation of
Bayes’ theorem and comment upon how Bayesianism should be useful for the quantum
gravity/cosmology programmes.
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During this paper we will introduce a novel notion of probability within
the framework of a histories theory. Firstly, we shall introduce Cox’s axioms of
probability theory and then show that our proposed notion of probability obeys
them. Secondly, we shall discuss the implications of such Bayesian probability
assignments on the physical foundations of quantum history theories, quantum
cosmology and relational gravity theories.

So, one can derive the standard rules of Bayesian probability theory from
axioms that notions of probable inference should obey. This was shown by Cox
(1961) who gave two simple axioms and derived probability theory from them.
One of the axioms is that the probability that two propositions α and β are both
true upon a given hypothesis I should depend only upon the probability of one
of the propositions upon the same hypothesis and the probability of the other
proposition upon the same hypothesis conjoined with the presumption that the
former proposition is true. This can be written schematically as:

p(α ∧ β | I ) := F [p(α | βI ), p(β | I )] (1)

where F is some function to be determined that is sufficiently well-behaved for
our purposes.

Cox’s other axiom is simply that the probability of the negation of a propo-
sition upon a given hypothesis should depend only upon the probability of that
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proposition upon the same hypothesis. This can similarly be written as:

p(¬α | I ) := G[p(α | I )]. (2)

Of course, there is an implicit zeroth axiom that probabilities should be
represented by real numbers. Using such axioms Cox derived that the standard
probability rules must be obeyed.

However, once one attempts to derive probability as a form of probable
inference one is not wholly clear about the status of the zeroth axiom. Certain
probabilities must be considered real when they are to be interpreted as relative
frequencies but, in terms of a theory of probable inference, there is no a priori
reason why probabilities should be real. In fact, we can split up the zeroth axiom
into two further axioms (Jaynes, 2003). Firstly we can presume the transitivity of
probability assignments:

Axiom 0a: If p(α | I ) > p(β | I ) and p(β | I ) > p(γ | I )

then p(α | I ) > p(γ | I ) (3)

where ‘>’ is an ordering notion that is defined on the space we use to represent
probabilities.

Secondly, we can presume what is called ‘universal comparability’:

Axiom 0b: For all α, β we have that either p(α | I ) > p(β | I )

or p(α | I ) < p(β | I ) or p(α | I ) = p(β | I ). (4)

The combination of axioms 0a and 0b ensures that probability assignments
can be real numbers. Obviously axioms 0a and 0b are restrictions upon the type of
probability space we desire for notions of probable inference. However, we might
easily not desire axiom 0b, especially in the light of quantum theory and special
relativity. There are physical reasons why we might not be able to universally
compare certain propositions probabilistically. For example, should we be able to
compare two statements that involve spacelike separated regions, or that involve
incompatible variables? A form of probability that does compare such statements
might involve unjustified inference. So not only do we argue that probabilities
need not be real numbers, we also argue that, in certain physical situations, they
should not be real numbers. The reals simply might not have enough structure to
represent a plausible notion of probability in certain situations. See also (Isham,
2003) for other reasons why we might choose not to use reals for all notions of
probability.

This is a thesis argued rather cogently by Youssef (1994, 2001) who argues
that complex numbers and quaternions could also be consistent with Cox’s two
axioms (or rather axioms analogous to Cox’s). Such work attempts a derivation
of the consistency of complex numbers with Cox’s two axioms by presuming
a distributive lattice of propositions. One can then derive quantum mechanical
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features for such probability theories. We shall not comment upon this work
much more but rather we take a slightly different tack; we would like to discuss
quantum history theories (Griffiths, 1984; Omnes, 1988; Gell-Mann and Hartle,
1990; Isham, 1994).

Following (Isham, 1994), we can define a homogeneous history as an ordered
tensor product of Heisenberg picture projection operators:

α := α̂tn(tn) ⊗ α̂tn−1 (tn−1) ⊗ . . . α̂t2 (t2) ⊗ α̂t1 (t1) (5)

such that tn > tn−1 > . . . t2 > t1 > t0 and α̂tn(tn) = Û (tn − t0)α̂tn Û
†(tn − t0)

where α̂tn is a standard Schrödinger picture projection operator and Û is the
standard unitary evolution operator. The ordered set of times upon which an
homogeneous history is defined is called its temporal support. Inhomogeneous
histories can then be defined using ‘∨’ or ‘¬’ operations that are naturally defined
(Isham, 1994) to produce an algebra of history propositions. There are also natural
notions of disjointness and exhaustivity. In the consistent histories programme one
normally defines what is called the decoherence functional d which can then be
used to define relative frequencies for some complete (disjoint and exhaustive) sets
of histories—these are the same relative frequencies as predicted by the von Neu-
mann collapse hypothesis. Sets in which the relative frequencies are well-defined
are called d-consistent and not all complete sets are d-consistent. However, we do
not wish to discuss relative frequencies per se; we would rather discuss the more
general notion of Bayesian probabilities.

One can naturally define what is called the class operator of such a history
(Isham, 1994):

Cα := α̂tn (tn)α̂tn−1 (tn−1) . . . α̂t2 (t2)α̂t1 (t1). (6)

Such class operators can also be defined for inhomogeneous combinations of
homogeneous histories (Isham, 1994) in a natural manner. We have the property
that, for disjoint homogeneous histories that are defined over the same temporal
supports, the class operators just add:

Cα∨β = α̂tn (tn) . . . α̂t1 (t1) + β̂tn (tn) . . . β̂t1 (t1). (7)

Instead of using the subset of the set of complete sets of history propositions
that consists of d-consistent sets one can define a larger subset of sets that are
Linearly Positive (LP)—this larger subset was introduced by Goldstein and Page
(1995) as an alternative to the d-consistent subset which is used in the standard
consistent histories programme. Recent work (Marlow, 2006) has shown that there
is a certain amount of consistency between a real notion of Bayesian probability
and the LP formalism. These LP probabilities seem to obey Bayesian reasoning
whereas the standard notion of probability using the decoherence functional does
not. Thus we have a ‘good’—it seems to obey Cox’s axioms—notion of probability
for the LP subset of the space of history propositions. We do not, however, have an
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assignment that is good for all complete sets. All in all, it seems rather implausible
that such a real probability can be found. We might instead be able to invoke a com-
plex notion of probability. The decoherence functional gives complex numbers but
it does not obey (2) and is designed specifically with the aim of giving real probabil-
ities. Note that its form is derived specifically by presuming von Neumann collapse
which gives a natural notion of relative frequency (Anastopoulos, 2004). So, von
Neumann collapses are designed to give something real. Without presuming von
Neumann collapse one is also released from discussing solely relative frequencies.

The most obvious complex candidate is simply:

p(α | I ) := tr(Cαρ) (8)

where ρ is the initial density matrix (defined at t0) and α is either homogeneous
as in (5) or is an inhomogeneous proposition defined by combining homogeneous
histories using the natural ‘∨’ and ‘¬’ operations (Isham, 1994). The real part of
this candidate behave like normal probabilities for the LP subset. Also, given the
natural algebra of history propositions (Isham, 1994), (8) obeys (2):

p(¬α | I ) = tr((1 − Cα)ρ) = tr(ρ) − tr(Cαρ) = G[p(α | I )] (9)

where 1 is the unit history proposition.
If Cox’s other axiom (1) is to be obeyed in situations where we have the

associativity of the ‘∧’ operation such that:

α ∧ (β ∧ γ ) = (α ∧ β) ∧ γ = α ∧ β ∧ γ (10)

then Bayes’ rule should be valid (by Cox’s proof (Cox, 1961)). Hence we should
have that:

p(α | βI ) = tr(Cα∧βρ)

tr(Cβρ)
(11)

which is well-defined as long as tr(Cβρ) �= 0. Note that the ‘∧’ is commutative
for homogeneous histories defined upon the same temporal support such that
α ∧ β = β ∧ α. Hence Cox’s proof of the multiplication rule also remains valid:

p(α | βI )p(β | I ) = p(β | αI )p(α | I ). (12)

Now we must ask ourselves whether such a complex probability assignment
is (a) consistent (b) unique and (c) useful? Since it obeys Cox’s axioms then it has
a certain amount of consistency as a probability assignment. Question (b) is quite
hard to answer but we can certainly begin to tackle (c). Hartle (2004) has recently
suggested (also see Feynman, 1987) that virtual probabilities—real but not within
[0, 1]—might be useful as intermediate steps in any quantum analysis. In light
of axiom 0b we would prefer to go the whole hog and discuss a different space
for the probabilities altogether—Hartle’s virtual probabilities are real so should be
rejected unless one weakens one of the probability axioms, but axiom 0b is the most
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plausible to weaken and would give something other than the reals; thus it seems
more natural to invoke the full complex probability. Also note the rather good
analogy between the above and Youssef’s work (Youssef, 1997). Youssef attempts
to prove that complex and quarterion probabilities are compatible with Cox’s
axioms (or rather some axioms akin to Cox’s) combined with the presumption
that there exists a sublattice where the normal real probabilities are obtained. This
is a necessary feature of such a theory since axiom 0b should presumably apply
to a subset of propositions, just not universally. Such an argument adds weight
to Youssef’s derivation of quantum-like features—similarly for Caticha’s recent
pedagogical derivation of a quantum theory (Caticha, 1998). Similarly we could
ask the same question for history theories—and Marlow (2006) has shown that
there is a subset of histories where the standard Bayesian rules apply—but we
already have a complex object that might obey Cox’s axioms; namely (8).

If we are willing to accept a complex probability then note that the natural
candidate behaves in a rather nice way. When histories α and β are homogeneous
(and defined over the same temporal support) and disjoint (α ∧ β = 0 where 0 is
used to denote the null history) then we have that:

tr(Cα∨βρ) = tr(Cαρ) + tr(Cβρ). (13)

So, in such situations our complex probability assignment behaves in the
completely standard manner:

p(α ∨ β | I ) = p(α | I ) + p(β | I ) − p(α ∧ β | I ). (14)

Although this does not yet convince us that such an assignment is really
useful conceptually, at least it behaves in a nice manner for such a large number
of histories—it is valid for all complete sets of homogeneous histories.

Note that α ∧ β = β ∧ α for homogeneous histories defined over the same
temporal support regardless of commutation issues at each time point. In the simple
case of two homogeneous histories defined over the same temporal support, where
the projection operators at each time point commute, we have that:

tr(Cα∨βρ) = tr(Cαρ) + tr(Cβρ) − tr(Cα∧βρ). (15)

For example, for two two-time histories in the HPO formulation α = α̂t1 ⊗ α̂t2 and
β = β̂t1 ⊗ β̂t2 such that [α̂t1 , β̂t1 ] = 0 and [α̂t2 , β̂t2 ] = 0 we have that:

α ∨ β = α + β − α̂t1 β̂t1 ⊗ α̂t2 β̂t2 (16)

= α + β − (α̂t1 ∧ β̂t1 ) ⊗ (α̂t2 ∧ β̂t2 ). (17)

So, at least for disjoint and commuting homogeneous histories, our probability
assignment behaves in the standard manner.

The major use of this ‘Bayesian Histories’ formalism is its simplicity; and
its ease of generalisation. What we have is a formalism that behaves as a standard
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probability theory for all complete sets of histories. The probabilities just happen
to be complex. One might like to ask why we should use complex numbers and
we can see that they do not obey axiom 0b. Youssef argues that, of the spaces that
don’t obey 0b, we should use complex or quaternion numbers because they can
also obey Cox’s other two axioms. Note that the natural partial order on complex
numbers does obey axiom 0a. He uses a distributive lattice for his argument so we
have yet to complete his argument fully for the non-distributive history algebra
proper. We shall not attempt to do such a thing here.

Even given such complex probabilities, we always know that we can get
standard real Bayesian probabilities out for a certain subset of the space of history
propositions and, furthermore, we can get out relative frequencies by further
defining consistency (note that consistency might not be the only way for us to get
relative frequencies). The point is that we don’t need all that, we know that we
can get such things out in the end; for now we can just search for well-behaved
Bayesian probabilities in domains not yet studied. Hence it is the simplicity and
generality of such an unreal probability programme which means it might be
useful in the quantum gravity domain. Note that what type of space of probability
we use is dependent upon the space and logic of the history propositions we
invoke; note also that we require notions of kinematics and dynamics before
we can discuss our probability assignments (we use the Heisenberg picture). So
perhaps quantum gravity will benefit from explicitly not using standard quantum
theory (as is usually the case) and we can simply search for a consistent Bayesian
probability assignment for whatever propositional space one ends up deriving by
other means, say using causal sets (which, presuming some form of background
independence, should include both kinematical and dynamical aspects of the
theory). Youssef (2001) has shown that even for distributive logics one can derive
many quantum mechanical features from just invoking a complex probability, so
a general path is clear: try and find a natural proposition space to be derived prior
to probabilistic notions, and then invoke Bayesian reasoning to get the quantum
mechanical features from the theory.

So, weirdly enough, Bayesianism might be very useful in relational theo-
ries of gravity (where it is rarely invoked; see (Poulin, 2005; Caticha, 2005) for
tentative proposals in this area). Here we would briefly like to discuss a few curi-
ous analogies between relationism and Bayesian philosophy. There are two basic
principles of relationism according to Leibniz. Firstly there is the ‘principle of
sufficient reason’, and secondly there is the ‘principle of identifying the indis-
cernible’ (see Smolin, 2005 for an accessible discussion of relationalism). These
two principles are connected by the Bayesian ‘principle of insufficient reason’
which states that if you do not have a rational reason for differentiating two state-
ments you should assign them identical probabilities. If you do have a rational
reason for differentiating statements then you should assign different probabilities
according to rational rules. Thus, foundationally, Bayesian probability theory is
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wholly compatible with a relational philosophy. In fact, these two philosophical
standpoints might be identified in the future. Bayesian probability is a way of
representing such relational ideas via a probability space—the relational nature
of gravity theories may help us, rather than hinder us, in searching for quantum
probabilities. Hence why we believe this Bayesian histories programme may be
useful for quantum gravity theories. We intend to investigate such a quantum
gravity programme in future work.

Of course, acceptance of the above programme relies significantly upon a
Bayesian view of probabilities. So, let us now briefly discuss why such a view-
point is useful. Firstly note that Bayesian probabilities aren’t incompatible with
notions of relative frequency. Quite the opposite; Bayesian probabilities can incor-
porate most notions of relative frequencies within the literature, whereas theories
of relative frequencies need to be designed for the problem at hand (Jaynes,
2003). Bayesian probability theory is an umbrella philosophy that can incorporate
many different notions of relative frequency (using notions of independence, ex-
changability, and maximum entropy for example). Also, Bayesian probability is
pedagogically useful because of the lack of philosophical presumptions that goes
into the theory. One can show that any notion of probable inference that obeys
completely transparent axioms must behave as we expect. Caticha has also re-
cently shown that entropy formulae can also be derived in a particularly Bayesian
way (Caticha, 2004) (and references therein). Entropy is normally considered a
physical property of systems but Caticha shows that one can sometimes consis-
tently take an opposing view. What better way to investigate a concept than to
explicitly give the axioms by which we are allowed to consistently state it? Espe-
cially since there might be physical cases where such axioms are violated. This is
the pedagogical power of the Bayesian programme. Since such axioms are clearly
defined, the Bayesian programme is also ripe for generalisation because certain
axioms can be relaxed if there are cogent reasons for doing so. This is not the
case with relative frequencies which do not have such a clear pedagogical basis.
In Marlow (2006b) we also argue that the use of Bayesian probability can provide
a logical loophole in discussions about nonlocality and Bell’s inequalities.

Often Bayesian probabilities are rejected because they are considered sub-
jective. This, however, is the wrong way to look at it. It is only by considering
probabilities as subjective that we can begin to understand the reasons we use the
concept ‘probability’ as we do. Calling a probability ‘objective’, when we can
never measure it directly, is not good ontology, especially since such ‘objective’
probabilities are usually invoked as relative frequencies which in turn are defined
using an entirely unphysical notion of infinite ensembles. One can never measure
‘entropy’ or ‘probability’, one can only apply (either consistently or inconsis-
tently) these concepts to the measurements we make (Mana, 2004). ‘Entropy’ and
‘probability’ are forms of reasoning we use, not things that are. We must work out
why and how we use these concepts. Assuming that they are objective properties
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of systems does not help us in this enterprise as it only gives us the opportunity to
accept them without thinking about why we use them in the way we do. So, it is
better to derive such concepts from a consistent set of plausible axioms. Having
to invoke some subjectivity in the notion of probability is thus not the result of
the programme, it is the whole pedagogical basis of doing things in a Bayesian
manner. One must first assume that probabilities are subjective in order to then
begin to work out why we ought to assign a certain probability over another. It is
also clear that these plausible axioms are not a priori philosophical axioms; we
require them to be consistent with the physics we are doing, and the physics we
are doing can justify further generalisations or axioms. So the term ‘subjective’
should not be considered synonymous with ‘not physical’ or ‘arbitrary’.

Another reason Bayesian probabilities are sometimes rejected (especially by
quantum cosmologists) is because of the notion of ‘observers’ that is often kept
explicit. Perhaps this is a misconception however, as is shown by the pervasive
use of Bayesian methods in the astrophysics community. Bayesian probability
theory doesn’t require that we have observers floating around and that we must
model them—the observers need not be ‘in’ the theory nor ‘outside’ the system
being discussed. Bayesianism is more about what ‘we’, as theorists, are allowed
to consistently say about a theory. There is no measurement problem as soon
as one accepts that it is necessarily ‘us’ who are interpreting a theory. We can
either interpret a theory consistently or inconsistently; Bayesianism is an attempt
to do so consistently. Thus we do not need to invoke ‘observers’—one can do
so for pedagogical reasons but it is not a necessary feature of Bayesian physics.
One should rather use rational ‘interpreters’ instead of ‘observers’ but even that
is just a pedagogical notion and could still be removed from the foundations of
the theory. Interpreters are pedagogically invoked for the same reason that we
need subjectivity; we must first presume that we could interpret things differently
before we can begin to constrain how we ought to interpret things. No two equals
are the same. So, such interpreters are not ‘passive’ because they are rational but
nor are they ‘invasive’—we don’t have to assume that they (‘we’) are physically
effecting the world around them (‘us’) through rationalising.

Note that implicit in our definition of probability is a notion of dynamics (we
are using the Heisenberg picture). We also explicitly have a notion of initial state
ρ. This may confuse some Bayesian practitioners because ρ is often considered
subjective and we should be able to update any state assignment given further
information. However, if we are to be discussing closed quantum systems then the
dynamics and the initial state must first be postulated (Hartle, 1991). They could
be postulated through Bayesian reasoning, but we do not discuss such a possibility
here.

Clearly we are not presenting a complete programme. We still have to argue
a direct path between weakening 0b and getting necessarily to complex numbers
for the history algebra. This would presumably involve a physical justification for
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not probabilistically comparing those statements that a complex probability allows
us not to compare universally. Note, however, the analogy between Bayesianism
and Gleason’s theorem: (1) and (2) are effectively non-contextuality assumptions.
Hence we remain hopeful that a uniqueness theorem may be forthcoming. We
are also still not clear how the notion of entropy should be generalised in such
domains, but we do not rule out that it also might be complex. Note that the
real part of (8) behaves like a normal Bayesian probability for the LP subset so
the normal formula of Shannon entropy should also behave as normal for the LP
subset (Marlow, 2006).

Note also that the conditional complex probabilities defined using Bayes’
theorem (11) behave in a nice manner; we have that, for all complete sets of
homogeneous histories defined over the same temporal support {αi}Nα

i=1 such that
β is also homogeneous, on the same temporal support, and commutes with the αi :

Nα∑
i=1

p(αi | βI ) = 1. (18)

This is because we have a certain amount of distributivity for such histories:

∑
i

(αi ∧ β) =
( ∑

i

αi

)
∧ β. (19)

For example, for two-time homogeneous histories in the HPO formulation (Isham,
1994) we have that:

(α1 + α2) ∧ β = (
α̂1

t2
(t2) ⊗ α̂1

t1
(t1) + α̂2

t2
(t2) ⊗ α̂2

t1
(t1)

) ∧ (β̂t2 (t2) ⊗ β̂t1 (t1))

= (α1 ∧ β) + (α2 ∧ β). (20)

This property arises because history propositions are projection operators on some
larger histories Hilbert space; it is a standard result that distributivity is obeyed for
mutually commuting projection operators. It passes across to the class operators
such that:

Nα∑
i=1

tr(Cαi∧βρ)

tr(Cβρ)
= tr(C1∧βρ)

tr(Cβρ)
= tr(Cβρ)

tr(Cβρ)
= 1. (21)

Thus updating by Bayes’ theorem in this manner gives a posteriori probabilities
that behave in exactly the same manner as the a priori ones. For complete sets
of homogeneous histories that are defined over the same temporal support, they
add up to 1 and are additive (as long as the a priori history commutes with the a
posteriori ones). This is, of course, exactly what Bayes’ theorem is about; one takes
probabilities and updates them to give something that are also good probabilities.

An opposing programme would be to keep probabilities real (presum-
ably because they are to be interpreted as frequencies), but to try and give a
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pedagogical justification for a non-additive measure of relative frequency (Sorkin,
1995). Such a task would probably involve frequencies which don’t converge to
a single value (Aerts, 2002; Anastopoulos, 2005). For frequencies that don’t con-
verge to a single value, the most natural interpretation is that we are confusing
contexts somehow—this is exactly the justification given in Marlow (2006) for the
LP probabilities, albeit within a Bayesian framework. However, our Bayesian anal-
ysis need not be incompatible with notions of relative frequencies as such notions
(or non-convergent generalisations) should be derivable from it as in the classical
case.

So, although the presumption that probabilities are complex might initially
seem patently absurd, there is a certain amount of internal consistency to the ar-
gument. Feynman has often cogently argued for the use of ‘negative probabilities’
in physics (Feynman, 1987) but these ‘negative probabilities’ don’t behave like
probabilities according to Cox’s axioms. The added structure provided by using
complex numbers is exactly what is required in order to make a ‘good’ notion of
probability for all complete sets of homogeneous history propositions. The real
part of our complex notion can give the standard real notion of Bayesian probabil-
ities for LP history propositions and, furthermore, can give us the standard notion
of relative frequency for the d-consistent subset.

Although not yet complete, this programme includes the two main previous
quantum history theories in certain limits. This Bayesian histories programme also
suggests where we should look in order to find a physical justification for quantum
history theories; namely we point at axiom 0b. It is also foundationally compatible
with a relational philosophy.
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